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A B S T R A C T   

In recent years, deep learning models have been applied to neuroimaging data for early diagnosis of Alzheimer’s 
disease (AD). Structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) images 
provide structural and functional information about the brain, respectively. Combining these features leads to 
improved performance than using a single modality alone in building predictive models for AD diagnosis. 
However, current multi-modal approaches in deep learning, based on sMRI and PET, are mostly limited to 
convolutional neural networks, which do not facilitate integration of both image and phenotypic information of 
subjects. We propose to use graph neural networks (GNN) that are designed to deal with problems in non- 
Euclidean domains. In this study, we demonstrate how brain networks are created from sMRI or PET images 
and can be used in a population graph framework that combines phenotypic information with imaging features 
of the brain networks. Then, we present a multi-modal GNN framework where each modality has its own branch 
of GNN and a technique that combines the multi-modal data at both the level of node vectors and adjacency 
matrices. Finally, we perform late fusion to combine the preliminary decisions made in each branch and produce 
a final prediction. As multi-modality data becomes available, multi-source and multi-modal is the trend of AD 
diagnosis. We conducted explorative experiments based on multi-modal imaging data combined with non- 
imaging phenotypic information for AD diagnosis and analyzed the impact of phenotypic information on diag
nostic performance. Results from experiments demonstrated that our proposed multi-modal approach improves 
performance for AD diagnosis. Our study also provides technical reference and support the need for multivariate 
multi-modal diagnosis methods.   

1. Introduction 

Alzheimer’s disease (AD) is a degenerative disease of the central 
nervous system, largely manifested in the form of memory, language, 
cognition, and even emotional disorders. The state between normal 
control (NC) and AD is called mild cognitive impairment (MCI) and 
more than half of MCI cases progress to AD [1]. Still, no cure or pre
ventive drugs have been successfully developed for AD but early diag
nosis of AD allows for early intervention measures that could delay the 
progression of the disease [2]. Therefore, early diagnosis and treatment 
of AD is of great significance to patients. At present, the clinical diag
nosis of AD largely depends on a wide range of sources, including 
medical history, neurological assessments, behavioral tests, neuro
imaging scans, etc. [3]. 

Neuroimaging plays an important role in the identification of 

treatable causes of dementia and provides a stronger basis for the 
screening and early diagnosis of AD [4]. A variety of imaging methods 
including structural magnetic resonance imaging (sMRI) and positron 
emission tomography (PET) techniques for clinical image-assisted 
diagnosis, which provides information about brain structure and func
tion, respectively. sMRI helps us to understand changes in brain struc
ture features (such as volume and shape) and can be used to predict AD 
progression [5]. On the other hand, 18-fluorodeoxyglucose PET 
(FDG-PET) is a molecular diagnostic method to visualize glucose 
metabolism. The functional analysis of PET image is carried out by 
studying the degree of glucose metabolism [6]. Both structural and 
functional information are important when studying biological systems. 
Studies performed on only one modality is unable to capture both 
structural and functional aspects of the brain. To make up for these 
shortcomings, several studies [7] have used multi-modal methods to 
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enhance features, leading to better prediction performance. 
In recent years, deep learning methods have been proposed for the 

analysis and diagnosis of diseases related to cognitive impairment [8]. 
Although convolutional neural networks (CNN) can learn image repre
sentations effectively, they do not fully consider the correlation between 
the subjects. Furthermore, CNN provides limited extensibility for the 
integration of multi-modal datasets; one major downside is the need for 
all inputs to have the same dimensions if each channel represents a 
different modality. On the other hand, graph neural networks (GNN), 
which extends classical CNN to non-Euclidean space by using graph 
topology or feature propagation between neighborhood nodes [9], 
afford greater flexibility for multi-modal integration. Graph convolu
tional network (GCN) is a type of GNN that works directly on graphs and 
take advantage of relational information encoded in the graph structure 
[10]. For instance, when nodes are used to represent subjects (such as 
patients or healthy people), edges of the graph can store information 
about the similarity between nodes. GCNs can perform signal filtering 
and aggregate information from neighboring nodes to obtain improved 
feature representations, which in turn can be used for disease prediction 
and graph analysis [11,12]. The flexibility of choosing various combi
nations of data modalities for node vectors and adjacency matrices make 
GCN an ideal method to combine multi-modal images. 

GNN methods have achieved commendable performance for AD 
diagnosis. Ktena et al. [13] used graph similarity measures between 
brain connectivity maps of functional MRI (fMRI) to construct a 
multi-layer GCN filter for AD prediction. Song et al. [14] constructed a 
multi-class GCN classifier based on structural connectivity, performed 
multi-class disease classification of four disease stages across the AD 
spectrum, and verified that the GCN classifier outperforms the SVM on a 
disease prediction task. Zhang et al. [15] proposed a GCN using 
multi-modal brain networks from various diffusion weighted imaging 
sequences to predict clinical indicators and verified the effectiveness of 
integrated multi-modal brain network in prediction tasks. Overall, these 
studies have shown the effectiveness of GCN in the diagnosis of brain 
related diseases. 

In the above works that relied on GCN, fMRI and diffusion tensor 
imaging (DTI) data are usually used for graph analysis tasks [16,17]. 
There are established methods to construct individual brain networks 
from these modalities but there is no clear way to do so directly by 
regions-of-interest (ROI) features for modalities such as sMRI and PET 
(which are 3-dimensional, as compared to 4-dimensional fMRI and DTI 
data). This makes it challenging to construct a GCN based on sMRI and 
PET images. To solve this problem, we adopt a method of generating 
brain networks [18] via brain ROI features to obtain individual features 
of subjects. Then, we draw inspiration from the flexibility of 
graph-based analysis by combining the use of graph nodes to represent 
the individual features of subjects with the use of a sparse population 
matrix built using phenotypic information. Finally, a population-based 
GNN is constructed for the early diagnosis of AD based on sMRI and 
PET images via the multi-modal GNN framework. We propose 
combining of sMRI and PET information both at the level of node vectors 
as well as at the adjacency matrices. We show that our proposed 
approach led to improvements in model performance for both AD 
detection and prediction of sMCI versus pMCI. Furthermore, we perform 
ablation studies on the demographic features used and found that 
combining MMSE score has a great impact on AD detection. 

The contributions of this study are as follows: (1) we adapt a tech
nique to generate specific individual features from indirectly con
structed brain networks based on sMRI and PET data, making it possible 
to use GNN to model these data modalities; (2) The association between 
individual features and subjects in the population is represented by 
combining imaging data with phenotypic data, and we discussed the 
effect of phenotypic information on GNN diagnostic performance; (3) To 
use the complementary relationship between image information ignored 
in graph construction, the adjacency matrices constructed by different 
imaging features are fused to realize edge weight sharing; (4) Through a 

combination of a late fusion strategy, our proposed multimodal GNN 
framework is further improved in AD diagnosis performance. 

2. Dataset and materials 

The data used in this work are from the Alzheimer’s Disease Neu
roimage Initiative (ADNI) database [19], which is publicly available 
(www.loni.ucla.edu/adni). We used the MPRAGE sMRI and FDG-PET 
(six 5-min frames 30–60 min post injection) from the ADNI-1 and 
ADNI-2 baseline for AD assessment, acquiring paired multimodal images 
from the same subject and from the closest acquisition date. The detailed 
description of image protocols and acquisition can be found at adni-info. 
org. Except for AD and NC subjects, the obtained MCI data are divided 
into progressive MCI (pMCI) and stable MCI (sMCI): MCI subjects who 
developed AD within 3 years were classified as pMCI and those who did 
not convert to AD were classified as sMCI. In total, the dataset has 792 
subjects, including 215 AD, 246 NC, 331 MCI (120 MCI converters 
(pMCI), and 211 MCI non-converters (sMCI)). The MMSE is a cognitive 
scale with scores ranging mainly from 10 to 30, with 30 indicating 
normal cognitive impairment and lower scores indicating more severe 
dementia. The gene data apoe4 in our study includes three genetic types 
tagged as 0, 1 and 2. Table 1 shows the key demographic statistics for 
each category of subjects in this study. 

We used conventional procedures for brain image preprocessing, 
correction, and affine registration; the data preprocessing workflow is 
shown in Fig. 1. Specifically, all sMRI data underwent anterior 
commissure-posterior commissure correction and affine alignment via 
SPM12. The N4 algorithm [20] was applied to correct the non-uniform 
tissue intensities and affine alignment to MNI152 space [21] was done to 
align the sMRI with the normalized template. PET images were 
co-registered to the corresponding N4 bias-corrected sMRI images by 
using rigid and non-linear for co-registration routine by Clinica platform 
[22,23]. The resolution of processed images was 121 × 145 × 121. After 
that, we extracted 116 sMRI ROI features and 116 PET ROI features 
based on the AAL atlas [24], respectively. For sMRI, the volumetric in
formation of gray matter (GM), white matter (WM), and cerebrospinal 
fluid (CSF) in brain ROI regions were obtained. For PET, the standard
ized uptake value ratio (suvr) [25,26] in brain ROI regions was obtained. 
The calculation of suvr is relative to each individual brain region. We 
divided the data according to the ID No. of subjects, with the first n-1 
numbered subjects used for network training, and half of the data after n 
used for validation and the other half for testing. To avoid data leakage 
[27], all brain images in each modality dataset were not from the same 
subject. 

3. Methods 

In this study, we propose a multi-modal GNN architecture to perform 
early detection of AD. The architecture is composed of multiple branches 
of GCN, one for each data modality. Nodes in the adjacency matrix used 
in the GCNs represent single modality features from a single subject. The 
scores of all subjects are computed through the decision-making output 
of a softmax layer in each branch, which are then combined for the final 
prediction. To better capture the relationships between subjects with 
image features, we propose to construct a brain network for each subject 
from ROI features extracted from imaging data, instead of directly using 
the ROI features from the brain. The edges of the adjacency matrix are 

Table 1 
The demographic information of dataset used in this study.   

Numbers Gender(M/F) Age(yrs) MMSE(score) 

AD 215 126/89 74.9 ± 7.7 23.21(±2.13) 
NC 246 125/121 74.1 ± 5.8 29.02(±1.21) 
sMCI 211 125/86 72.5 ± 7.4 28.01(±0.71) 
pMCI 120 74/46 74.4 ± 7.1 27.15(±1.81)  
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defined by combining features from the brain networks constructed with 
the phenotypic information of subjects, which reveals the similarity 
between the features of each subject. This bears some similarity with the 
population graph approach which has become popular recently [12]. A 
key difference and novelty in our proposed approach is the application 
to multimodality of images and the method of fusing graphs generated 
from each data modality. 

3.1. Individual feature extraction 

In the population graph, each node represents features of a subject. 
Due to slight differences between ROI features from sMRI and PET im
ages, using these features in an input matrix leads to suboptimal model 
performance. Instead, we construct a brain network to extract more 
contrasting features so as to achieve better performance. 

3.1.1. Individual features based on PET 
For PET ROI features, it is unclear how to construct brain networks 

since ROI features are in the form of a vector (unlike fMRI, which is a 4- 
dimensional data and it is straightforward to see how a correlation 
matrix can be built). Therefore, we construct a brain network [18] for 
every subject indirectly by comparing them to a group of normal 
subjects. 

First, we calculate the weighting matrix based on the interregional 
effect size differences of average intake between individual subjects and 
mean NC subjects. The connectivity E(i, j) of a subject in the i-th ROI and 
j-th ROI is expressed as: 

E(i, j)=
⃒
⃒
(
fi − f NC,i

)
−
(
fj − f NC,j

)⃒
⃒

sp(i, j)
(1) 

where fi represents the metabolic information suvr of a person in the 
i-th ROI; and fNC,i represents the average metabolic information of all NC 
patients in the i-th ROI. In formula (1), 

sp(i, j) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(s2

i + s2
j )/2

√
where si represents the standard deviation of 

the metabolic information of all NC subjects in the i-th ROI. 
The expression of correlation coefficient value R(i, j) between the i-th 

and j-th ROIs is obtained based on Fisher transform [28]: 

R(i, j)=
exp(2 × E(i, j)) − 1
exp(2 × E(i, j)) + 1

(2) 

the value of R(i, j) ranges between 0 and 1, and decreases with the 
increase of E(i, j). Then, the weighting matrix W(i, j) of a single subject is 
expressed as: 

W(i, j)= 1 − R(i, j) (3) 

The weighting matrix W of a subject is then multiplied by the 

connectivity matrix of the NC group to obtain the connectivity between 
the i-th ROI and the j-th ROI of a subject. The brain network matrix {B(i, 
j)} is expressed as: 

B(i, j)=W(i, j) ⊙ MNC(i, j) (4)  

where MNC(i, j) is the value of row i and column j in the correlation 
coefficient matrix made by each ROI of all NC subjects and ⊙ indicates 
Hadamard product. A flow chart of the process of creating individual 
brain matrix and feature extraction is shown in Fig. 2. 

Finally, through the feature extraction from the subject’s brain ma
trix B, we use the values on the upper triangle of matrix B as the subject’s 
individual features. Taking the subject with P brain ROIs as a reference 
where the dimension of the connectivity matrix B is P × P. Then the 
dimension of the individual features is given by (P × (P+1))/2. 

3.1.2. Individual features based on sMRI 
The ROI features obtained from sMRI images include gray matter 

(GM), white matter (WM), and cerebrospinal fluid (CSF). Therefore, we 
can construct the corresponding individual brain network separately by 
using several ROI features (GM, WM, or brain matter (GM + WM)) 
extracted from sMRI in accordance with the above method (3.1.1). 
Furthermore, we need to explore the specificity of different features 
obtained by above method to provide more effective input features for 
the multi-modal GNN. 

3.2. Graph construction 

The performance of GCN is greatly influenced by how its adjacency 
matrix is constructed [29]. In this work, each node in the graph is rep
resented by the feature vectors of its corresponding subject, and the edge 
weights between nodes represent the similarities between the subjects 
[9,12]. We define an undirected graph G(V, E, A) with a set of vertices vn 
∈ V (n = 1,2, …,N) where n represents the number of subjects. Each 
vertex vn is represented by the subject associated with the features from 
the upper half matrix of each brain network and the edges (vn, vm)∈E, 
(vn, vm) = anm = amn, amn ∈ A where each element of A is an edge weight. 
A is a normalized adjacency matrix describing the connectivity of all 
vertices. The normalized graph Laplacian is defined as: L = I − A = I −
D− 1/2WD− 1/2, where D = diagi[

∑
i∕=jwij] is the diagonal degree matrix. 

Generally, we can obtain the adjacency matrix A by computing the 
similarity. For a total of N subjects, each subject is represented as a node, 
where each node is assigned a label l∈{0, 1} corresponding to its class. 
The two-layer GCN can be described by the formula: 

Z = softmax
(
AReLU

(
AXW(0))W(1)) (5)  

3.2.1. Edge connections and weights 
Edge connections and edge weights are key features in GCN as they 

determine which nodes are used to perform convolution and corre
sponding convolution coefficients. Edge weights are calculated in 
different ways in various studies [12,15]. In this work, we combined 
non-imaging information to construct the graph that established edge 
connections for assigning larger edge weights among subjects. 

In graph theory, the initial similarity can be used to construct the 
edge weights for convolution filtering. We estimate the similarity S be
tween subjects v and u by calculating the correlation distance. The S is 
defined as: 

S(Fv,Fu)=
exp
(
− [ρ(Fv,Fu)]

2)

2σ2 (6)  

where ρ is the correlation distance, σ is the width of the kernel, and Fv 
and Fu are the feature vectors of the subject v and subject u. 

To this end, we further consider the non-imaging information (such 
as gender, gene and MMSE score, etc.) to construct an adjacency matrix 
A(v, u), which is calculated as: 

Fig. 1. The preprocessing pipeline of sMRI and PET scans. The raw brain im
ages were aligned to MNI152 space and then ROI features were extracted for 
each modality image, using AAL atlas. 
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A(v, u)= S(Fv,Fu) × (rG(Gv,Gu)+ rP(Pv,Pu)+ rM(Ev,Eu)) (7)  

In formula (6), the rG, rP and rM are defined as: 

rG(Gv,Gu)=

{
1,
0,

Gu = Gv
Gu ∕= Gv

(8)  

rP(Pv,Pu)=

{
1,Pv = Pu
0,Pv ∕= Pu

(9)  

rM(Mv,Mu)=

{
1,
0,

|Mu − Mv| ≤ 1
otherwise (10)  

where rG represents the distance for their gender information and rE 
represents the distance for their apoe4 information and rM represents the 
distance for their MMSE score. When the corresponding two subjects 
have the same gender or same apoe4 or similar MMSE socre, the edge 
weight is doubled, otherwise it is set to 0 as shown in formula (8), (9) 
and (10). 

The constructing of adjacency matrix combined with phenotypic 
information weights is shown in Fig. 3. The above approach of con
structing the adjacency matrix A works for a single modality but it does 
not describe how to deal with multiple modalities. We address this issue 

in the next two subsections. 

3.2.2. Integration mechanism for adjacency matrices 
Due to the complementarity of structural and functional information, 

we further construct an integrated adjacency matrix that combines the 
adjacency matrix from individual modalities. Based on the above con
struction method of adjacency matrix A(v, u), we can obtain the adja
cency matrix As based on sMRI features and the adjacency matrix Af 
based on PET features respectively, and then the integrated adjacency 
matrix Aim is calculated by Hadamard product: 

Aim =As ⊙ Af (11)  

3.2.3. Fusion mechanism for node vectors 
According to (6), we estimate the similarity S between subjects v and 

u by calculating the correlation distance between feature vectors. To 
fuse the two modality features to obtain a shared adjacency matrix, we 
concatenate the individual features of two images to calculate the cor
relation matrix. Then S can be expressed as: 

S(Fvc,Fuc)=
exp
(
− [ρ(Fvc,Fuc)]

2)

2σ2 (12) 

Fig. 2. The flow chart of individual brain network and feature extraction from PET image. We obtained the ROI features (suvr) of brain regions from PET, then 
derived the mean and standard deviation of ROI features based on a group of normal health subjects, and obtained the brain matrix by our computational process, 
and finally flattened the upper triangular matrix into a one-dimensional individual features. 

Fig. 3. The flow chart of the constructing of adjacency matrix combined with phenotypic information weighs.  
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where Fvc and Fuc are the concatenated feature vectors of two modality 
images of subject v and subject u. Then the adjacency matrix Afm based 
on fusion mechanism can be calculated by using (7). 

3.2.4. Integrated fusion mechanism 
Through the above two mechanisms, we further construct a shared 

adjacency matrix to fuse the adjacency matrices of each modality. Based 
on the construction methods of the above two adjacency matrices Aim 
and Afm, the integrated fusion adjacency matrix Aif is calculated by 
Hadamard product: 

Aif =Aim ⊙ Afm (13)  

3.3. Chebyshev GCN 

In GCNs, spectral theory improves the adjacency matrix by applying 
Fourier transform and Taylor expansion to obtain an excellent filtering 
effect. The spectral domain convolution on graphs [9] can be expressed 
as the operation of signal x with the filter gθ = diag(θ) by: 

gθ ∗ x=Ugθ(Λ)UT ∗ x=
∑K

k=0
θkTk(L̃)x (14)  

where U is the eigenvector matrix and calculated by the formula L =

IN − D− 1/2AD− 1/2 = UΛUT . IN and D is the identity matrix and diagonal 
degree matrix, respectively. The truncated expansion of Chebyshev 
polynomials is well approximated to gθ(Λ) of K-order [30]. θk is the 
vector of Chebyshev coefficients, Tk is the Chebyshev polynomial func
tion, and ̃L = 2/λmaxΛ − IN. Different filtering effects can be obtained by 
adjusting the polynomial order K, the best performance is achieved 
when K is set to 3 or 4 [12]. 

3.4. Multi-modal network architecture 

Our multi-modal network framework consists of two branches of 
Chebyshev GCN (CGCN), one for each modality. Each branch consists of 
a two-layer CGCN where hidden layers are activated by ReLU function, 
the number of units in hidden layer is L (L = 32). In each branch, the 

output layer is followed by a softmax function. The trained GNN marks 
the unlabeled nodes on the test set and outputs the scores by softmax. 
We use dropout after the ReLU activation of each layer to reduce over
fitting. The softmax function for N class probabilities output of the sub 
network is as follows: 

softmax
(
zj
)
=

exp
(
zj
)

∑N
j=1

(
exp
(
zj
)) (15)  

where zj in the above (13) represents the j-th value of the output vector 
in network. N is the number of categories, the calculated softmax(zj) 
value is between (0, 1). 

After the softmax function in each branch, we get the final prediction 
result by the decision fusion of the output probability of softmax: 

softmax
(
zj
)

final =
1
2
×

(
exp
(
zj0
)

∑N
j0=1

(
exp
(
zj0
))+

exp
(
zj1
)

∑N
j1=1

(
exp
(
zj1
))

)

(16)  

where zj0 is from the first branch and zj1 is from the second branch. 
Our multi-modal network architecture is illustrated in Fig. 4. In the 

population-based GNN, the training set is a labeled subset of graph 
nodes and the trained GNN produces classification labels for the unla
beled nodes in the test set. 

4. Experiments and results 

4.1. Experimental design 

Our models were implemented in PyTorch and ran on a Windows 
x86-64 computer equipped with Intel(R) Xeon(R) @3.60 GHz, NVIDIA 
Quadro P620 and 32 GB memory. In experiments, the training set, 
validation set and test set was obtained by partitioning the dataset of 
proportions 70%, 15% and 15%. In our population-based GNN, the 
training set and verification set were labeled while the test set was un
labeled with a mask. The labels of the test set are unknown during the 
network optimization, the test set is predicted after training and 
compared with the correct labels to derive the performance measures. 
Due to the limited access to medical images compared to other fields, 

Fig. 4. The network architecture of our multi-modal GNN method. We incorporate phenotypic information into the graph, where the nodes represent subjects and it 
associates the subject’s imaging features. There are two layers composed in the graph network and finally decision is derived by late fusion mechanism, each score in 
branch network corresponds to the diagnostic result of the corresponding subject. 
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especially in the case of multi-modality data for the same subject, cur
rent studies [16,27] are mainly based on ADNI, the most world widely 
used database. However, the ADNI does not specify a fixed test set. To 
show that our method still has some generalization, our experiments 
were conducted on four different sub-datasets (the test set of four 
sub-datasets do not include the same subjects) and calculated the 
average accuracy to report as the final diagnostic result. Further, we 
selected two sub-datasets to evaluate the stability of model by a five-fold 
cross-validation strategy. 

The hyperparameters were determined empirically as follows: 
dropout rate was 0.5, weight decay was set to 5e-4, and learning rate 
was set to 1e-3. The order K in CGCN was set to 3. The network was 
trained for 100 epochs for convergence, and we compared with the GCN 
architecture trained for 300 epochs. The cross-entropy loss function was 
used to optimize the model parameters. To compare the validity of 
proposed method, the training hyperparameters were fixed in all 
methods. In addition to the AD vs. NC classification for disease exclu
sion, the prediction of MCI conversion is of great importance for the 
early treatment of AD patients. Therefore, we conducted the classifica
tion tasks of AD vs. NC and sMCI vs. pMCI, and evaluated the perfor
mance based on accuracy (ACC), sensitivity (SEN), specificity (SPE) and 
the area under curve (AUC). 

We divided the experimental section into the following parts. Firstly, 
we carried out experiments on GCN model based on single modality 
images (i.e., separate experiments for sMRI and PET), and compared the 
diagnostic effectiveness of brain network features constructed based on 
several brain features. Secondly, we experimented with several multi- 
modal methods and compared it with the single modality approach. 
Finally, we carried out the explorative experiments by constructing the 
adjacency matrix combined with gender, apoe4, MMSE, etc. informa
tion. Using phenotypic information can further improved the diagnostic 
performance of GNN, and discussed the impact of phenotypic informa
tion on AD diagnosis. In addition, we compared the state-of-the-art 
method to prove the effectiveness of our proposed method. 

4.2. Experimental results and discussion 

First, the GCN model based on sMRI features was used for ablation 
experiments and the impact of sMRI features for AD diagnosis was 
explored. Features obtained through brain networks (BN) and directly 
extracted ROI features were used as inputs for GCN in this part. We know 
that in sMRI, cognitive impairment is mainly related to atrophy of GM, 
WM and brain structure [31,32]. For this reason, first we obtained in
dividual features in this way (Section 3.1.2) based on three kinds of ROI 
features (GM, WM and brain matter) separately, as well as the way [12] 
of ROI features extracted directly from MRI, then carried out classifi
cation experiments based on GCN model. Results from these experi
ments are summarized in Table 2. Compared with the GM ROI features 
from MRI, the individual features we obtained through the brain 
network have better specificity, allowing the GCN model to perform 
better clustering performance with a considerable improvement in ac
curacy. Moreover, from the experimental results, it is seen that models 
using GM features produced the best result in AD vs. NC classification, 

with an average accuracy of 87.71%. The models using brain matter 
features produced the best result in sMCI vs. pMCI classification, with an 
average accuracy of 72.40%. This also reflected that in AD symptoms, 
the biomarkers of gray matter are more specific, while in MCI period, the 
atrophy of gray matter is not obvious compared with AD. 

Secondly, we carried out the similar experiments based on PET 
metabolic features. The results of ablation GCN experiments based on 
PET ROI features and the features from the brain network (Section 3.1.1) 
are also shown in Table 2. From the classification results in Table 2 
based on sMRI and PET features, the method of constructing individual 
brain network of PET features has better performance. Meanwhile, the 
accuracy of diagnosis based on brain network features is much higher 
than that based on ROI features. Brain ROI feature methods are often 
based on traditional machine learning such as support vector machines 
(SVM), which needs to achieve better performance with effective feature 
selection [33,34], but this also requires more processes and is usually 
effective on smaller samples. Our features acquisition from brain 
network shows better advantages in terms of performance and 
efficiency. 

Furthermore, the value of using GM features can be demonstrated by 
visualizing and comparing the brain matrices built using various imag
ing features. As seen in Fig. 5, the difference between AD and NC is the 
greatest for GM amongst structural image features. Also, PET shows an 
obvious difference between AD and NC that were even larger than those 
seen in GM. This might explain why models using PET did better than 
models that used sMRI features. This result is consistent with the 
established clinical knowledge. PET can detect the functional brain 
changes and specific pathologies of AD at the early stage than sMRI. 

By the correlation coefficients of brain regions in our constructed 
brain network based on sMRI features and PET features in AD diagnosis, 
we selected five key regions. Fig. 6 shows the visualization of the key 
ROIs in brain for AD diagnosis based on sMRI and PET in our study. In 
sMRI, specifically, these ROIs are Temporal_Pole_Sup, Rectus, Lingual, 
Hippocampus and Amygdala. In PET, specifically, these ROIs are Fron
tal_Sup, Frontal_Sup_Medial, Occipital_Mid, Occipital_Inf and Tempo
ral_Mid. It can be seen that some of these brain regions are mainly 
concentrated in memory regions, which are correlated with cognitive 
disorders in some clinical studies [35,36]. 

In the subsequent experiments on multi-modal datasets, we will 
therefore focus on models that use GM features as the structural imaging 
modality. The similarity only is used to construct the adjacency matrix 
and we use both types of GNN models for comparative tests, including 
GCN and CGCN. To test whether the combination of multi-modal im
aging features can improve diagnostic performance, we experimented 
with several multi-modal mechanisms in this study. We first create a 
baseline where the two GCN branches are simply combined, which we 
call dual GCN (DGCN), that is, each branch uses its own adjacency 
matrix. Then, we designed different multi-modal fusion techniques that 
constructs a shared adjacency matrix in three different ways: integration 
DGCN (IDGCN) from Section 3.2.2, fusion DGCN (FDGCN) from Section 
3.2.3 and integrated fusion DGCN (IFDGCN) from Section 3.2.4. The 
results based on GCN are shown in Table 3, and the results based on 
CGCN are shown in Table 4. In the binary classification of AD vs. NC, 

Table 2 
The classification results of GCN model based on various imaging information from sMRI and PET.  

Features AD vs. NC sMCI vs. pMCI 

ACC SEN SPE AUC ACC SEN SPE AUC 

GM ROIs 81.62 78.74 83.83 81.28 65.00 31.18 85.99 59.42 
GM + WM BN 85.15 81.17 88.51 84.84 72.40 48.15 87.47 67.81 
WM BN 77.14 69.56 83.62 76.59 67.20 36.74 87.50 62.12 
GM BN 87.71 83.95 91.43 87.63 71.20 41.33 88.40 64.87 
PET ROIs 82.45 74.22 87.81 82.02 66.23 42.22 81.56 61.89 
PET BN 88.00 86.54 89.37 87.95 73.20 53.26 82.96 68.06 

BN (Brain Networks). 
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IFDCGCN achieves the best accuracy of 91.07, sensitivity of 90.22, 
specificity of 91.87 and AUC of 91.04. In the binary classification of 
sMCI vs. pMCI, IFDCGCN achieves the best accuracy of 75.50, and its 
corresponding sensitivity of 49.90, specificity of 88.70 and AUC of 69.30 
are also improved as compared to single modality methods. 

In the population-based GNN method for AD diagnosis, the effective 
expression of individual features can lead to better prediction perfor
mance. From the results in Tables 3 and 4, we demonstrated that our 
proposed multi-modal fusion framework can further improve the accu
racy of AD diagnosis. The effectiveness of our multi-modal method can 
be attributed to the following three points. Firstly, it is evident that the 
late fusion mechanism helped to improve the accuracy of the model 
prediction. The late fusion combines the decisions of two independent 
branches of GNN, which is consistently observed in both GCN and CGCN 
models. CGCN performs better in accuracy as compared to GCN. Also, 
CGCN has the advantage of stability as the standard deviation of its 
results is smaller. In Fig. 7, we showed the training curves, loss curves 
and validation curves of the IFDGCN and IFDCGCN multi-modal 
methods for AD prediction. Seen from the validation curves, the accu
racy of the fusion decision is higher than that of the two separate 
branches when the network training reaches a certain epoch. According 
to the training, validation curves and epoch, CGCN converges faster, and 
the prediction is more stable. Secondly, the multi-modal mechanisms we 
proposed are more effective than the simple late fusion approach in 
DGCN. This shows the value of creating a shared adjacency matrix 
constructed based on multi-modal data. The way adjacency matrices are 
constructed has a direct impact on the performance of the GNN models. 

Fig. 8 summarizes the comparisons between single modality methods 

Fig. 5. The four figures are the difference of individual brain network matrix between AD and NC subjects. The matrices from left to right are based on brain matter 
features, WM features, GM features and PET features respectively. 

Fig. 6. Visualization of the key ROIs in brain for AD diagnosis. In the top row 
we show the key ROIs in the coronal and sagittal views of brain MRI image. In 
the bottom row we show the key ROIs in the coronal and sagittal views of brain 
PET image. 

Table 3 
The classification results of several multi-modal methods based on GCN model.  

Methods AD vs. NC sMCI vs. pMCI 

ACC SEN SPE AUC ACC SEN SPE AUC 

DGCN 89.65 87.94 91.13 89.53 73.50 51.83 85.99 68.91 
IDGCN 90.36 86.47 93.87 90.17 74.00 51.03 87.78 68.67 
FDGCN 90.71 87.94 93.12 90.55 75.00 52.05 85.34 68.69 
IFDGCN 91.07 88.72 93.25 90.98 75.50 50.25 88.13 68.45 

The methods in this table are based on GCN, DGCN means Dual GCN, IDGCN means Integration Dual GCN, FDGCN means Fusion Dual GCN, IFDGCN means Integrated 
Fusion Dual GCN. 

Table 4 
The classification results of several multi-modal methods based on Chebyshev GCN model.  

Methods AD vs. NC sMCI vs. pMCI 

ACC SEN SPE AUC ACC SEN SPE AUC 

DCGCN 90.00 88.60 91.12 89.86 74.50 48.29 87.67 65.01 
IDCGCN 90.72 89.41 91.86 90.63 75.00 49.43 88.02 68.72 
FDCGCN 91.07 90.15 91.86 91.00 75.50 50.43 88.02 69.22 
IFDCGCN 91.07 90.22 91.87 91.04 75.50 49.90 88.70 69.30 

The methods in this table are based on CGCN (Chebyshev GCN), DCGCN means Dual CGCN, IDCGCN means Integration Dual CGCN, FDCGCN means Fusion Dual 
CGCN, IFDCGCN means Integrated Fusion Dual CGCN. 
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and multi-modal methods in a box plot showing classification accuracy. 
While multi-modal methods are clearly superior to single modality ap
proaches, we note that the choice of integration mechanisms does not 
lead to huge differences in model performance. In addition, the multi- 
modal method of CGCN has better performance in the choice of GNN 
models, and the stability of CGCN is much better than that of GCN. 
Overall, our proposed IFDCGCN produced the best results in terms of 
classification performance and stability. 

In addition, some non-imaging information has also been found to be 
associated with AD in some studies [37–39], such as genes, gender, age, 
MMSE, etc., which have important references in the diagnosis of 
cognitive impairment. With the accumulation and richness of imaging 
and non-imaging multi-source data, how to fuse multi-source and 
multi-modal data is the trend for accurate AD evaluation in the future. 
Therefore, this work aims to further fuse non-imaging information based 
on the use of multi-modal GNN framework to achieve more accurate AD 
diagnosis. 

The results of the ablation experiments on AD vs. NC and sMCI vs. 
pMCI diagnostic tasks were further explored based on our validated 
multi-modal GNN (IFDCGCN) incorporating various phenotypic infor
mation as shown in Table 5, and Fig. 9 summarizes the corresponding 
comparisons in a box plot. We found that the adjacency matrix 

combined with gender, gene, and MMSE score information benefited or 
improved the diagnostic performance of the model, especially 
combining MMSE (in formula (7), rG = 0 and rP = 0) obtained a very 
significant improvement in AD vs. NC diagnosis. The best results were 
obtained by MMSE, gender, and gene all weighted information in sMCI 
vs. pMCI diagnosis. With the information based on MMSE scores, it made 
the weighting more pronounced in AD vs. NC subjects, while both sMCI 
and pMCI belong to MCI patients, so their MMSE scores were close, both 
almost in the range of 27–29 score, this made the inter-subject weights 
insignificant to the extent that the improvement in GNN classification 
performance is limited. But also obtained better prediction of MCI 
conversion with the combining of several phenotypic information. In 
contrast, combining age information (age difference within 1 year 
weighted as 1, otherwise 0) in our GNN approach did not have any 
improvement or even a decrease in disease prediction. In the graph, the 
weights of non-imaging information are associated with the imaging 
features, the combination of effective phenotypic information allows to 
target a few subjects with marginal imaging features to be judged 
correctly. In this part of the explorative experiments, e.g., gender in
formation also plays a role in the construction of the adjacency matrix on 
the performance of the GCN, which is consistent with some results of 
study [12]. Some phenotypic information is more clinically accessible, 
which has an advantage for GNN-based AD diagnosis methods. For the 
age information, the effect is not ideal. We infer that it is difficult to find 
a direct correlation with the features of subjects because of the wide 
range of age distribution. However, age information is helpful for the 
diagnosis of AD in clinical practice, which is also what needs further 
research in future. 

On a fixed two sub-test set, our IFDCGCN method combining the 
MMSE information was again experimented with 5-fold cross-validation 
in the tasks of AD vs. NC, and the results shown in Fig. 10. The average 
accuracy was 98.00% and 96.29% with standard deviations of 0.78 and 
0.78, respectively. The AUCs were 98.06 and 96.58 with standard de
viations of 0.90 and 0.72, respectively. The above results indicate that 
our proposed multi-modal GNN is stable. 

In this work, the adjacency matrix can be constructed based on a 
combination of similarity matrix and non-imaging data. To better 
demonstrate the advantages of multi-modal mechanisms and to explore 
the differences in constructing adjacency matrices based on phenotypic 
information, Fig. 11 compares the visualizations of the adjacency 

Fig. 7. The figures from left-to-right are the training curve, loss curve and verification curve based on IFDGCN (above) and IFDCGCN (below) multi-modal method, 
respectively. 

Fig. 8. The accuracy of classification results based on single modality and 
multi-modal methods. 
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matrices constructed using MMSE and GAM (Gender + Apoe4+MMSE) 
information based on IFDCGCN method in two diagnostic tasks. In these 
visualizations, we rearranged the rows so that subjects in the same 
category were grouped together to make the differences between cate
gories more apparent. The group similarity matrices constructed based 
on our integrated fusion mechanism in combination with MMSE showed 
a very significant intra-group correlation for the AD vs. NC subject 
group, resulting in an average accuracy of 96.68%. In contrast, the 
combination based on multiple phenotypic information had relatively 
better intra-group correlations in sMCI vs. pMCI diagnosis. However, 

MCI conversion prediction needs to be continuously explored, and since 
both sMCI and pMCI belong to the MCI category, the low specificity 
features of both categories also contribute to the lower prediction ac
curacy. We infer that it is more important to acquire or construct indi
vidual features that are more perceptive. 

In addition to analyzing the parameters that affect the prediction 
performance of GNN, we also compared it with several different state-of- 
the-art methods based on ADNI database to verify the utility of our 
proposed method. The comparative studies are based on sMRI, PET and 
multi-modal methods. The results include AD vs. NC classification in 

Table 5 
The classification results of Multi-modal GNN framework combining the phenotypic information.  

sMRI + PET AD vs. NC sMCI vs. pMCI 

ACC SEN SPE AUC ACC SEN SPE AUC 

Similarity 91.07 90.22 91.87 91.04 75.50 49.90 88.70 69.30 
Aope4 91.07 88.56 93.17 90.86 75.50 50.03 88.80 69.42 
Age 88.93 86.43 91.08 88.76 74.50 48.06 88.80 68.93 
Gender 91.79 90.15 93.19 91.67 76.50 51.81 89.70 70.76 
MMSE 96.68 99.19 94.49 96.84 76.00 51.03 88.80 69.92 
G + M 95.00 93.09 96.71 94.90 77.00 51.90 89.37 70.63 
G + A + M 93.21 90.19 95.98 93.08 78.00 54.96 89.37 72.16 

G + M means the combining of gender and MMSE. G + A + M means the combining of gender, apoe4 and MMSE. 

Fig. 9. It summarizes the comparison of diagnostic accuracy based on multi-modal GNN combined with various phenotypic information.  

Fig. 10. The five test ACC and AUC results by 5-fold cross-validation based on IFDCGCN multi-modal GNN on two sub-datasets, respectively.  
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Table 6 and sMCI vs. pMCI classification in Table 7. It can be observed 
that our proposed method has achieved satisfactory performance. In 
addition to a better prediction accuracy, it also has an advantage or 
comparable performance in terms of diagnostic specificity. Another 
notable point is our method also outperforms some multi-modal CNN 
methods. 

In summary, the changes of brain structure and metabolic charac
teristics of AD patients are different, which makes multi-modal images 
provide more complementary information. But existing GNN analysis 
based on multi-modal image features are mostly limited to DTI and fMRI 
[16,17]: it is clear how to present these 4-dimensional data as brain 
networks and construct the topology of nodes for them in GNN analysis 
because the brain regions in fMRI or DTI imaging have the character
istics of sequential signals or fiber connection directions. However, it is 

not obvious how GNN can be used on sMRI and PET data. In addition, 
many research based on GNN methods focus on the improvement of 
network architecture and the optimization of adjacency matrix, while 
ignoring the importance of individual features. To solve the above 
shortcomings, we obtain specific individual features via constructing 
brain networks with ROI features respectively, then construct GNN with 
the method of nodes representing subjects, which solves the problem of 
difficulty in constructing graph neural networks based on sMRI and PET 
features. 

In our approach, we further play the advantages of multi-modal data 
information and improved diagnostic performance was achieved 
through the combination of multi-modal features, multi-modal adja
cency matrices and late decision fusion. Compared with fMRI and DTI 
data, the preprocessing process of sMRI and PET is relatively simpler, 

Fig. 11. It shows the adjacency matrices combining non-imaging data based on the IFDCGCN in AD detection (left column) and MCI prediction (right column). Our 
method has significant intra-group correlation and provides obvious contrast between the classes especially combining the MMSE information (top row) in AD 
detection (left column). 

Table 6 
The AD vs. NC classification in studies based on the ADNI dataset.  

STUDY ACC SEN SPE SUBJECT 
NUM. 

METHOD 

Tong et al. [40] 90.00 84.90 92.60 429 subjects Graph kernels 
Wen et al. [27] 89.00 - - 666 subjects ROI 3D CNN 
Wee et al. [41] 85.80 83.50 87.50 1610 subjects GCN 
Parisa et al. [7] 89.10 87.40 92.10 407 subjects Multi-modal 

CNN 
Fan et al. [42] 88.31 91.40 84.42 428 subjects Multi-modal 

CNN 
Pan et al. [43] 93.58 91.52 95.22 857 subjects Multi-modal 

CNN 
Lin et al. [44] 89.26 82.69 96.48 670 subjects Multi-modal 

CNN 
Huang et al. 

[45] 
90.10 90.85 89.21 1378 subjects Multi-modal 

CNN 
OURS 96.68 99.19 94.49 461 subjects Multi-modal 

GNN  

Table 7 
The sMCI vs. pMCI classification in studies based on the ADNI dataset.  

STUDY ACC SEN SPE SUBJECT 
NUM. 

METHOD 

Wen et al. [27] 74.00 - - 593 subjects ROI 3D CNN 
Tong et al. 

[40] 
70.40 67.00 73.00 405 subjects Graph kernels 

Kang et al. 
[46] 

66.70 - - 319 subjects 2D CNN 

Hett et al. [47] 76.00 - - 216 subjects GCN 
Parisa et al. 

[7] 
68.20 78.10 57.50 489 subjects Multi-modal CNN 

Lu et al. [48] 75.44 77.27 76.19 626 subjects Multi-modal 
Network 

Huang et al. 
[45] 

76.90 68.15 83.93 767 subjects Multi-modal CNN 

Lin et al. [44] 74.10 75.00 73.08 416 subjects Multi-modal CNN 
OURS 78.00 54.96 89.37 331 subjects Multi-modal GNN  
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while GNN has the advantage of being fast, flexible and more parameter 
efficient as compared to CNN, and easier to integrate multi-source and 
multi-modal data. Therefore, our work could have considerable appli
cation prospects in the task of early diagnosis of AD. 

5. Conclusion 

In this study, we proposed a population-based and multi-modal GNN 
to predict early Alzheimer’s disease using image features and pheno
typic information. Our method obtained specific individual features by 
constructing brain networks and combined imaging data with pheno
typic data to represent the data association between individual features 
and subjects in potential populations. In addition, we further combined 
it with shared adjacency matrix and decision-making mechanism to 
achieve better multi-modal GNN diagnosis performance. Through 
several experiments, our proposed multi-modal method achieves 
improved prediction results on ADNI datasets especially in AD detection. 
Compared with several state-of-the-art methods, our proposed method 
shows better or equivalent diagnostic performance, including in the 
relatively challenging sMCI versus pMCI prediction task. Our study was 
mainly explorative on using ADNI dataset and further validation may be 
necessary using additional datasets to confirm the findings. 
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